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Abstract—Uplink integrated sensing and communication
(ISAC) systems have recently emerged as a promising research
direction, enabling simultaneous uplink signal detection and
target sensing. In this paper, we propose flexible projection
(FP)-type receivers that unify the projection-type receivers and
the successive interference cancellation (SIC)-type receivers by
using a flexible tradeoff factor to adapt to dynamically changing
uplink ISAC scenarios. The FP-type receivers address the joint
signal detection and target response estimation problem through
two coordinated phases: 1) Communication signal detection
using a reconstructed signal whose composition is controlled by
the tradeoff factor, followed by 2) Target response estimation
performed through subtraction of the detected communication
signal from the received signal. With adjustable tradeoff factors,
the FP-type receivers can balance the enhancement of the
signal-to-interference-plus-noise ratio (SINR) with the reduction
of correlation in the reconstructed signal for communication
signal detection. The pairwise error probabilities (PEPs) are
analyzed for both maximum likelihood (ML) and zero-forcing
(ZF) detectors, revealing that the optimal tradeoff factor should
be determined based on the adopted detection algorithm and
the relative power of the sensing and communication (S&C)
signal. A homotopy optimization framework is first applied
for the FP-type receivers with a fixed trade-off factor. This
framework is then extended to develop dynamic FP (DFP)-type
receivers, which iteratively adjust the trade-off factor for im-
proved algorithm performance and environmental adaptability.
Subsequently, two extensions are explored to further enhance the
receivers’ performance: parallel DFP (PDFP)-type receivers and
a block-structured receiver design. Finally, the effectiveness of
the proposed receiver designs is verified via simulations.

Index Terms—Integrated sensing and communication (ISAC),
receiver designs.

I. INTRODUCTION

Low-altitude economy (LAE) is anticipated to facilitate a
variety of applications in transportation, environmental mon-
itoring, agriculture, and entertainment, generating significant
economic and social value. Integrated sensing and communi-
cations (ISAC) [1], [2], a key technology for sixth-generation
(6G) wireless networks, has emerged as an effective solution
to support LAE [3], [4]. The continuous development of ISAC
enables base stations (BSs) to communicate with designated
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UAVs while simultaneously sensing the location and velocity
of other aerial targets, thereby establishing dual-functional
capabilities for heterogeneous service demands. This dual-
functional integration demonstrates particular advantages in
enhancing operational efficiency and safety assurance for
latency-sensitive applications such as real-time logistics track-
ing and aerial surveillance systems.

In contrast to traditional terrestrial networks that primarily
emphasize downlink services, UAVs require sustained uplink
transmission for multi-modal sensing data, such as video
streams, and environmental sampling data, leading to higher
uplink data rate demands. The coexistence of these uplink-
dominated communication services with the continuous sens-
ing requirements for targets presents substantial challenges for
future ISAC networks. Although these sensing and commu-
nication (S&C) services can be supported by using different
subcarrier or time resource blocks, this leads to low resource
utilization. To better exploit spectrum resources for enhanced
S&C performance, particularly for continuous sensing, uplink
ISAC receivers are expected to detect uplink communication
signal and simultaneously estimate target-related parameters
from the echoes. However, these concurrent S&C tasks intro-
duce significant mutual interference, making receiver designs
for uplink ISAC systems both intriguing and challenging.

Several initial investigations have been conducted in uplink
ISAC systems, focusing on systems architecture design [5],
[6], performance analysis [7]–[10], and transceiver beam-
forming [11]–[13]. These architecture designs explored the
potential of uplink ISAC systems and offered an initial at-
tempt at addressing the challenging joint signal detection and
sensing estimation problem. The contributions in performance
analysis mainly aim to derive analytical results for the outage
probability, sensing rate, and their asymptotic performance.
These studies indicated that, despite mutual interference, ISAC
receivers can offer increased degrees of freedom (DoFs)
for both S&C functionalities compared to frequency-division
S&C systems. Meanwhile, several contributions focused on
transceiver design in uplink ISAC, exploring the S&C per-
formance tradeoff and interference mitigation through power
allocation and beamforming techniques.

All the aforementioned research primarily focused on ex-
ploring the potential of uplink ISAC systems with succes-
sive interference cancellation (SIC)-type receivers. Notably,
in studies on architecture design [5], [6], communication
signal detection and radar target estimation were performed
sequentially. Furthermore, performance metrics used in anal-
yses and transceiver beamforming, such as sensing rate [7]
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and communication and sensing SINR [12], were derived
by treating the mutual interference as noise, which is a
key characteristic of SIC-type receivers. However, SIC-type
receivers represent a heuristic approach to the joint signal
detection and sensing problem and have been shown to be
suboptimal in simplified system setups [14]. Furthermore, the
use of SIC-type receivers necessitates a significant power
difference between S&C signals, which cannot be used in the
case where the powers of communication and sensing signal
are comparable.

To further harness the potential of uplink ISAC systems,
it is crucial to design more efficient receivers to mitigate
mutual interference or, equivalently, solve the joint uplink
communication signal detection and target response estimation
problem. Although the considered joint problem looks similar
to some problems including joint channel estimation and
signal detection [15], and interference elimination in the radar-
communication coexistence (RCC) systems [16], [17], their
objectives and design principles differ fundamentally. Specif-
ically, in the joint channel estimation and signal detection
problems, a turbo-like structure was employed where channel
estimation and signal detection were iteratively refined, using
data to enhance channel estimation accuracy. In the RCC sys-
tems, the receivers were designed by exploiting the frequency
sparsity to suppress radar interference for communication
signal detection [16], or vice versa [17].

More relevant to this study, the joint communication signal
detection and target estimation problem was investigated and
the projection-type receivers for uplink ISAC systems were
proposed in [18]. In [18], the joint communication signal
detection and target estimation problem was transformed into
an equivalent two-step problem by projection. Specifically,
the communication signal was detected in a transformed
signal detection problem and the sensing estimation was
performed after the communication symbols were detected.
Unlike SIC-type receivers, which treat mutual interference as
noise, projection-type receivers fully eliminated the sensing
interference during communication signal detection, making
it possible to achieve high S&C performance simultaneously.
However, the projection-type receivers still face several im-
plementation challenges, such as rank deficiency and high
computational complexity introduced by joint estimation of the
communication signal across multiple snapshots. Furthermore,
two fundamental problems remain unaddressed in uplink ISAC
receiver designs: (1) Directly applying existing multiple-input
multiple-output (MIMO) signal detection algorithms to the
transformed communication signal detection problem either
suffers from high computational complexity or poor perfor-
mance when rank deficiency occurs. How can uplink ISAC
receivers be designed with tailored low-complexity algorithms
that provide performance guarantees? (2) The power of the
S&C signal directly influences the strength of mutual inter-
ference, necessitating the use of different receiver types to
achieve optimal performance. However, the received power of
the sensing signal is determined by the environment and the
movement of the target, which may change rapidly and is not
known to the receiver. In this case, is it possible to develop
environment-adaptive receivers that can operate effectively

with varying S&C power?
Against the above background, our contributions are sum-

marized as follows:

1) The joint signal detection and target response estimation
problem in uplink ISAC systems is investigated, and
a general framework called flexible projection (FP)-
type receivers with a tradeoff factor is introduced.
In the proposed FP-type receivers, the communication
signal is detected using a reconstructed signal formed
by combining two signal components of the received
signal: one from the complement space of the radar
waveform and the other from the signal space of the
radar waveform, where the tradeoff factor controls the
ratio of the signal space component. Then, the FP-
type receivers perform the target response estimation by
subtracting the estimated communication signal from the
received signal.

2) We show that decreasing the tradeoff factor increases
the signal-to-interference-plus-noise ratio (SINR) of the
signal detection problem but also amplifies the unde-
sired correlation between the received signals. Then,
the pairwise error probabilities (PEPs) of the FP-type
receivers are studied for the maximum likelihood (ML)
detector and zero-forcing (ZF) detector, respectively.
The derived results reveal that the optimal tradeoff factor
is determined according to the communication signal
detection algorithm as well as the power of the S&C
signal and the noise.

3) Building upon a MIMO signal detection algorithm using
homotopy optimization, we propose the dynamic FP
(DFP)-type receivers. The proposed algorithm trans-
forms the formulated signal detection problem into
a continuous optimization problem. By adjusting the
tradeoff factor in each iteration, the DFP-type receivers
provide a smoother approximation to the original joint
signal detection and target estimation problem and offer
superior environmental adaptability compared to the
traditional FP-type receivers.

4) Finally, two extensions are discussed to enhance the
performance of the uplink ISAC receivers. The first is
the parallel DFP (PDFP)-type receivers, which employ
multiple DFP-type receivers to further improve their en-
vironmental adaptability. The second extension involves
the block structure of the uplink ISAC receivers, which
uses prior information about the target to enhance the
receivers’ performance.

The remainder of this paper is organized as follows. In
Section II, we present the system model and review the SIC-
type receivers and projection-type receivers. A general receiver
design principle and corresponding performance evaluation is
presented in Section III. A low complexity algorithm is de-
veloped in Section IV. In Section V, two algorithm extensions
are discussed. Finally, Sections VI and VII show the numerical
results, and conclusions, respectively.

Notations: CM×N denotes the set of M × N complex
matrices. E[·] denotes the expectation operation. ∥x∥2 denotes
the 2-norm of vector x. X ⊗ Y denotes the Kronecker
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Fig. 1: Considered uplink ISAC systems Fig. 2: Various types of receiver designs in uplink ISAC systems

product between X and Y. Rank(X), ∥X∥F , ∥X∥2, vec(X),
Tr (X), λi(X), ωj(X) denote the rank, Frobenius norm,
spectrum norm, vectorization operation, trace operation, the
i-th largest eigenvalue and the j-th largest singular value
of X, respectively. IN denotes the N × N identity matrix.
CN (0, I) represents a circularly symmetric complex Gaussian
random vector with zero mean and unit variance matrix. (·)T,
(·)∗, (·)H, (·)−1, and (·)† denote the transpose, conjugate,
Hermitian, inverse, and pseudoinverse operators, respectively.
The convex hull of a non-empty set X is denoted by conv(X ).

II. REVIEW OF UPLINK ISAC RECEIVER DESIGNS

A. System Model
We consider an uplink MIMO ISAC system shown in Fig.

1, consisting of K single-antenna communication users (CUs)
and multiple targets. We assume that a transmitter equipped
with Mt transmit antennas is used to transmit the sensing
signal, and a receiver equipped with Mr receive antennas
receives both the uplink communication signal and the radar
echo, where K ≤Mr.

The target sensing is implemented over a coherent process-
ing interval consisting of L snapshots. The transmitted sensing
signal at the transmitter at the l-th snapshot, xr[l] ∈ CMt×1,
satisfies E [xr[l]] = 0 and E[Tr(xr[l]x

H
r [l])] = Tr(R) ≤ Pr,

where R ⪰ 0 and Pr denote the covariance matrix and the
maximum transmit power of the sensing signal, respectively.
The target response matrix is denoted by Hr ∈ CMr×Mt ,
which contains the velocity and position of the targets. These
parameters can be determined using parameter estimation
methods, if the target response matrix estimation is available
[19]. Denoting Xr = [xr[1], · · · ,xr [L]] ∈ CMt×L, the aver-
age power of the received sensing signal across L snapshots
is given by Ps ≜ E[∥HrXr∥2F ]/L.

In each snapshot, the k-th CU transmits a modulated
symbol x̃c,k ∈ X to the receivers for uplink communica-
tion. We assume that the transmitted symbols of K CUs,
x̃c,k = [x̃c,1, · · · , x̃c,K ], are mutually uncorrelated and satisfy
E [x̃c,k] = 0 and E

[
x̃c,kx̃

H
c,k

]
= PcIM , where Pc denotes the

transmit power of the communication signal. We also assume
that the channel state information (CSI) of the CU-receiver
channel Hc is perfectly known at the receiver. Due to the rich
scattering environment, the channel matrix Hc has full rank,
i.e., Rank(Hc) = K, and the channel matrix is normalized so
that E[∥Hc∥2F ] = KMr.

We assume that the frequencies of the uplink communica-
tion signal and sensing signal are the same, then, the received

signal at the l-th snapshot, ỹ[l] ∈ CMr×1, is a combination of
the uplink communication signal and sensing echo, given by

ỹ[l] = Hcx̃c[l]︸ ︷︷ ︸
Uplink signal

+ Hrxr[l]︸ ︷︷ ︸
Sensing echo

+ñ[l], (1)

where ñ[l] denotes the additive white Gaussian noise
(AWGN) at the receiver following the distribution of ñ[l] ∼
CN

(
0, σ2IMr

)
with the noise power of σ2.

By stacking L > Mt snapshots together, the received signal
at the receiver can be formulated as

Y = HrXr +HcXc + Ñ, (2)

where Xc = [x̃c[1], · · · , x̃c [L]] ∈ CK×L, Y =
[ỹ[1], · · · , ỹ [L]] ∈ CMr×L, and Ñ = [ñ[1], · · · , ñ [L]] ∈
CMr×L.

In the considered uplink ISAC systems, receivers are re-
sponsible for simultaneously extracting the target response
matrix and decoding the communication signal. Since the
AWGN at the receiver follows the distribution of vec(Ñ) ∼
CN

(
0, Lσ2IMr

)
, the probability density function of Y given

Xc and Hr is

p(Y | Xc,Hr) =
1

(πLσ2)Mr
e

−∥Y−HrXr−HcXc∥2F
Lσ2 . (3)

Thus, the maximum likelihood (ML) estimation can be for-
mulated as a mixed integer least square (LS) problem

argmin
Hr,Xc∈XK×L

∥Y −HrXr −HcXc∥2F . (4)

According to the equality vec(AC) = (I⊗A) vec(C) =(
CT ⊗ I

)
vec(A) [20], (4) can be reformulated as

argmin
hr,xc∈XLK

∥y −Acxc −Arhr∥22, (5)

where xc = vec(Xc) ∈ CLK×1, y = vec(Y) ∈ CLMr×1,
Ar = XT

r ⊗IMr
∈ CLMr×MrMt , Ac = IL⊗Hc ∈ CLMr×LK ,

and the target response vector is given by hr = vec(Hr) ∈
CMrMt×1.

Remark 1: Retrieving the communication signal and the
target response matrix in Problem (4) is both fundamental and
challenging. Different from conventional linear LS problem
that has a unique solution if the observation matrix has full
column rank, solving the equation AX + ZB = C naturally
provides a non-unique solution set unless other constraints are
imposed [21]. In Problem (4), the uniqueness is guaranteed by
considering the communication alphabet constraint, which is
further investigated in the subsequent sections.
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B. SIC-Type Receivers
Previous contributions mainly consider two types of SIC-

based schemes to address Problem (4), namely C-SIC and S-
SIC [7]. As shown at the top of Fig. 2, C-SIC and S-SIC both
use two stages to process the S&C signal where the estimated
signal in the first stage is subtracted from the superposed signal
in the second stage. In the S-SIC scheme, the receiver first
decodes the uplink data by treating the aggregate interference-
plus-noise Arhr + n as Gaussian noise, and the decoded
signal can be obtained by solving the following standard signal
detection problem

xSIC
c = argmin

xc∈XLK

∥y −Acxc∥22. (6)

Assuming that the uplink data has been perfectly de-
coded, the detected communication signal is subtracted from
the superposed signal. The remainder, y −Acx

SIC
c , is then

utilized to estimate the target response matrix Hr by the
standard LS method. When all the communication symbols
are successfully detected, the target response estimation can
achieve the same performance as the sensing only system. In
the C-SIC scheme, the target response vector is first estimated
under the communication interference, and the estimated radar
signal is subtracted during the communication signal detec-
tion. However, the estimation problem can be viewed as a
detection problem with infinite hypothesis space, implying
that target response estimation errors are inevitable. Thus,
the resident target response estimation error influences the
subsequent communication performance, indicating that the
S&C performance of the C-SIC scheme in two stages is strictly
worse than that of the sensing/communication only systems.
To fully exploit the potential of uplink ISAC systems, we
mainly discuss the S-SIC scheme (which is called the SIC
scheme in the rest of the manuscript), while the spirit of the
C-SIC scheme is used in designing the block level structure
as discussed in Subsection V-B.

The most significant drawback of the SIC scheme in up-
link ISAC systems is the ineffective interference processing
function. By treating the radar signal as Gaussian noise, the
communication signal detection problem in (6) has a low
SINR, leading to a high bit error rate (BER) in the first stage.
Besides, the residual communication signal detection error
becomes more pronounced due to the high BER in the first
stage, significantly impacting the target response estimation
performance in the second stage, known as error propagation.

C. The Projection-Type Receiver
In our previous work [18], the projection-type receivers

were proposed to effectively address the mutual interference.
Unlike SIC, our proposed estimation scheme is an equivalent
transformation of the ML estimation in (4).

In the following, we present Theorem 1 to decouple the vari-
ables in the original mixed integer LS problem and transform
it into a signal detection problem.

Theorem 1: The solutions to Problem (4) is equivalent to
the combination of the solution for the transformed signal
detection Problem (7)

x̂c = argmin
xc∈XLK

∥Γ(y −Acxc)∥22, (7)

and the closed-form solution for the target response with the
estimated communication symbols x̂c:

ĥr(x̂c) = ΞAH
r (y −Acx̂c), (8)

where Ξ =
(
AH

r Ar

)−1
, and Γ = ILMr

−Ar(A
H
r Ar)

−1AH
r

is the projection matrix of the complement space of Ar.
Proof: Please refer to [18]. ■
Based on Theorem 1, the projection-based algorithm is

provided in [18, Algorithm 1] and at the bottom of Fig.
2. Our proposed projection-type receiver can be regarded
as an extension to the SIC scheme with proper interference
elimination methodology. Compared to the SIC scheme, we
first project the superimposed signal into the complement
space of Ar to eliminate the radar signal interference in the
signal detection process. After this projection, we decode the
communication signal and subsequently estimate the target
response, following a process similar to the SIC method.

It was demonstrated in [18] that the proposed projection-
type receivers maintain the same signal-to-noise ratio (SNR)
as the communication only systems in the signal detection
problem and have lower BER than convention SIC in most
cases. Besides, jointly processing multiple snapshots is another
key distinction between the projection-type receiver and SIC-
type receivers. It was shown that the signal detection perfor-
mance improves and the communication ergodic achievable
rate increases as the number of the snapshots L increases. As
L → ∞, the ergodic rate approaches that of the communi-
cation only systems, indicating that the impact of the mutual
interference can be perfectly canceled.

However, the improved performance comes at the cost of
increased complexity. The projection-type receivers require to
handle a high-dimensional equivalent channel matrix G ≜
ΓAc ∈ CLMr×LK in (7) that scales with the product of the
number of transmitted antennas and the number of snapshots.
Apart from the largely increased dimension, the performance
of the projection-type receiver also suffers from the rank-
deficiency issue, i.e., the rank of the equivalent channel matrix
G is smaller than the number of the transmitted symbols. The
rank deficiency issue is presented in the following lemma.

Lemma 1: Matrix G is a singular matrix, and its rank is
given by Rank(G) = (L−Mt)K < LK.

Proof: Please refer to [18]. ■
Remark 2: From a matrix equation perspective, solving

a rank-deficient matrix equation leads to infinity solutions,
which is extremely sensitive to the noise. Since the projection-
type receivers establish an equivalent transformation of Prob-
lem (4), they also maintain the rank deficiency issue, posing
a challenge in the communication signal detection problem.

III. FP-TYPE RECEIVERS: A UNIFIED FRAMEWORK

In this section, we first introduce the design principle
of the FP-type receivers, which unifies the aforementioned
projection-type receivers and the SIC-type receivers with a
flexible tradeoff factor. The SINR and the condition number
of the formulated signal detection problem using FP-type
receivers are then explored. Finally, the PEP of the FP-type
receivers using ML detector and linear detector is respectively
analyzed.
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Fig. 3: Illustration of the proposed FP-type receivers

A. Design Principle of the FP-type Receivers

The core of the projection-type receivers is solving the sig-
nal detection Problem in (7). In the projection-type receivers,
matrix Γ is the orthogonal projection matrix of Ar, which can
be rewritten as

Γ = P⊥ ⊗ IMr
, (9)

and the equivalent channel matrix in the signal detection
problem (7) is

G = ΓAc = P⊥ ⊗Hc, (10)

where P⊥ = IL −XT
r (X

∗
rX

T
r )

−1X∗
r is the projection matrix

corresponding to the complement space of the radar signal.
It can be observed from (9) and (10) that the formulated

signal detection problem in (7) can be modified by changing
matrix P⊥. Besides, the singular values of G are also deter-
mined by those of the orthogonal projection matrix P⊥, which
introduces the rank deficiency issue. Hence, modifying matrix
P⊥ can significantly influence the property of the transformed
signal detection problem.

In [18], the received signal is projected to the complement
space of the radar signal so that the radar interference is
fully eliminated during the signal detection, and is termed
as the projection-type receivers. In this work, a more general
framework using projection is proposed, termed the FP-type
receivers. Defining P∥ = XT

r (X
∗
rX

T
r )

−1X∗
r as the projec-

tion matrix corresponding to the signal space of the radar
waveform, the projection matrix of FP-type receivers PFP is
updated according to

PFP ≜ (1− ρ)P⊥ + ρI,= P⊥ + ρP∥, (11)

where ρ ∈ [0, 1] is the tradeoff factor. Upon defining Γ∥ =
P∥⊗ IMr as the projection matrix corresponding to the signal
space of Ar, the communication signal detection in the FP-
type receivers can be formulated as

x̂c = argmin
xc∈XLK

∥ΓFP(y −Acxc −Arhr)∥22 (12)

= argmin
xc∈XLK

∥ Γ(y −Acxc)︸ ︷︷ ︸
Complement Space

Component

+ρΓ∥(y −Acxc −Arhr)︸ ︷︷ ︸
Signal Space

Component

∥22.

In Fig. 3, we provide an illustration of the proposed FP-
type receivers. The received signal is decomposed into the
signal space component and the complement space compo-
nent of matrix Ar. In the proposed FP-type receivers, the
communication signal is detected via a reconstructed signal,
which is the combination of the complement space component
and part of the signal space component. The tradeoff factor ρ

decides the ratio of the signal space component used. More
specifically, if the tradeoff factor ρ = 1, we have PFP = IMr

and ΓFP = ILMr . This means the reconstructed signal is the
same as the received signal, which corresponds to the SIC-type
receivers. By decreasing the tradeoff factor ρ, the signal space
component has less impact on determining the communication
symbols. When ρ = 0, the received signal is projected to
the complement space of the radar signal to fully eliminate
the radar interference before the signal detection. In other
words, the FP-type receivers are reduced to the projection-
type receivers.

Since we do not know any prior information about hr, a
similar methodology as in SIC-type receivers is utilized by
treating the signal space component of the radar signal plus
noise as the AWGN. Then, Problem (12) can be reformulated
as

x̂c ≈ argmin
xc∈XLK

∥ΓFP(y −Acxc)∥22

= argmin
xc∈XLK

∥yFP −GFPxc∥22,
(13)

where

yFP = (PFP ⊗ IMr
)y, and GFP = PFP ⊗Hc. (14)

After the solution of Problem (13) is obtained, the FP-
type receivers then perform the target response estimation
with the estimated communication signal x̂c according to
(8). Since the precision of the target response estimation is
largely determined by the performance of the signal detection,
the performance of the FP-type receivers is evaluated by the
characteristics of Problem (13) in the subsequent analysis.
B. Revealing the Tradeoff Between Condition Number and
SINR

In this subsection, we analyze the condition number and the
SINR of the transformed signal detection problem using the
FP-type receivers.

The condition number of matrix GFP characterizes the
undesirable correlation between each column of the matrix,
which is given by

CondPT(GT) ≜
ω1(GFP)

ωLNt(GFP)
=

√
λ1(GH

FPGFP)

λLNt(GH
FPGFP)

=

√
λ1(PH

FPPFP)λ1(HH
c Hc)

λL(PH
FPPFP)λNt(HH

c Hc)

=
λ1(PFP)

λL(PFP)
Cond(Hc)

(a)
=

1

ρ
Cond(Hc),

(15)

where (a) exploits the fact that P⊥ has L−Mt unit eigenvalues
as well as Mt zero eigenvalues, and for arbitrary matrix A ∈
CN×N , λi(A+ σI) = λi(A) + σ, i = 1, · · · , N .

This indicates that with a smaller tradeoff factor, the column
correlation increases, leading to an ill-conditioned equivalent
channel matrix and worse signal detection performance.

Lemma 2: The SINR of the transformed signal detection
problem using the FP-type receivers is given by

SINRFP ≜
E
[
∥ΓFPAcxc∥22

]
E [∥ΓFPArhr∥22] + E [∥ΓFPn∥22]

=
Pc(L− (1− ρ2)Mt)KMr

ρ2LPs + (L− (1− ρ2)Mt)MrKσ2
,

(16)
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which is a monotonic decreasing function of the tradeoff
factors ρ. The maximum and the minimum SINR are, respec-
tively, achieved by using the projection-type and the SIC-type
receivers.

Proof: Please refer to Appendix A. ■
Remark 3: From the geometry perspective, the received

signal that lies in the complement space has a higher SINR
as compared to the signal space component. However, directly
projecting the received signal to the complement space reduces
the dimension of the observation signal, leading to a correlated
equivalent channel matrix. By increasing the tradeoff factor ρ,
the channel correlation is decreased owing to the introduced
signal space component, which, however, also leads to a
decreased SINR.

C. PEP Analysis of the FP-type Receivers

The condition number and SINR of the signal detection
problem derived in the last subsection characterize the property
of the formulated problem from different aspects. The error
probability Pe under different algorithms is a more direct
performance metric, which however is generally computation-
ally intractable. A customary solution is to approximate the
error probability using the PEP. The PEP is defined as the
probability that x̄c is selected at the receivers when x̃c is
transmitted, i.e., P (x̃c → x̄c). The connection between the
error probability and PEP can be characterized by

Pe ≤
1

|X |
∑
x̃c∈X

∑
x̄c∈X\x̃c

P (x̃c → x̄c). (17)

In what follows, we analyze the PEP of the FP-type receivers
when using the ML detector and ZF detector, respectively.

ML detector uses an exhaustive searching method to find
the solution to Problem (13) and typically serves as the
performance upper bound of the signal detection algorithm.
Denoting δ = x̃c − x̄c, the PEP under the ML criterion is
given by [22, Chapter 15]

PML(x̃c → x̄c) = P (∥ỹ −GFPx̃c∥2 ≤ ∥ỹ −GFPx̄c∥2)

= Q

(
∥GFPδ∥2√

2σ2
ML

)
, (18)

where Q denotes the Q-function and

σ2
ML = ρ2E

[
∥Arhr∥22

]
+ E

[
∥ΓFPn∥22

]
= ρ2LPs + (L− (1− ρ2)Mt)KMrσ

2.
(19)

Defining ∆ = Unvec(δ) and using the equation vec(ABC) =
(CT ⊗A) vec(B), (18) can be rewritten as

PML(x̃c → x̄c) = Q

(
∥Hc∆P∗

FP∥F√
2σ2

ML

)
. (20)

To derive the analytical results and provide guidance to the
FP-type receiver design, the following two assumptions are
made.

Assumption 1: Assuming that the number of received
antennas at the BS goes infinity, i.e., Mr → ∞, and each
entry of the channel matrix follows the complex Gaussian
distribution, we have HH

c Hc ≈ I. This assumption is known
as the favorable propagation in large-scale MIMO systems

and is widely used in reducing the complexity of the MIMO
precoding and signal detection [23]. The favorable propagation
assumption may not necessarily hold true in practical systems.
However, adopting this assumption provides a theoretical
upper bound of the PEP for ML detection and helps derive
the analytical results.

Assumption 2: The transmission process is defined as
transmitting L snapshots at a time block by K CUs. We
assume that during each transmission, only one transmitted
symbol is incorrectly detected. This assumption holds true
if the SINR is not very small given that the number of the
snapshots is not very large. Without loss of generality, we
assume that only the transmitted symbol at the N1-th antenna
in the L1-th snapshot is incorrectly detected, then (p, q)-th
elements of ∆ follows

∆[p,q] =

{
dmin, p, q = N1, L1

0, else, (21)

where dmin is the minimum distance in the constellation.
By using the above 2 assumptions, the expectation of

PML(x̃c → x̄c) over ∆ can be approximated as

E [PML(x̃c → x̄c)] ≈Q

(
dmin∥P∗

FP∥F
L
√

2σ2
ML

)

=Q

(
dmin

√
L− (1− ρ2)Mt

L
√
2σ2

ML

)
.

(22)

It can be easily verified that for the FP-type receivers, the
approximate PEP is an increasing function of ρ, indicating
that the projection-type receivers are optimal if ML detection
is used.

The performance of the linear estimator usually serves as
the lower bound of the system performance. When ρ ∈ (0, 1],
the PEP based on the ZF detector is given by [24]

PZF(x→ x̄) = Q

(
∥∆∥2F√
2σ2

ZF

)
, (23)

where

σ2
ZF = σ2

ML∥G
†
FPδ∥

2
2 = σ2

ML∥H†
c∆(P†

FP)
∗∥2F . (24)

By adopting Assumption 1, σ2
ZF can be approximated as

follows

σ2
ZF ≈ σ2

ML∥Hc∆(P†
FP)

∗∥2F ≈ σ2
ML∥∆(P†

FP)
∗∥2F . (25)

By adopting Assumption 2, the expectation of PZF(x̃c → x̄c)
over ∆ can be further approximated by

E [PZF(x̃c → x̄c)] =Q

(
d2min√
2σ2

ZF

)

≈Q

 d2minL

dmin

√
2σ2

ML∥P
†
FP∥2F


=Q

 dminL√
2σ2

ML(L−Mt +
Mt

ρ2 )

 .

(26)

This means that the equivalent noise of the ZF detector
σ2
ZF is determined not only by the equivalent noise of the ML
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detector σ2
ML, but also by the “noise amplification” effect of

the pseudo-inverse of matrix PFP. When ρ → 0, the matrix
PFP is reduced to the projection-type receivers, which theoret-
ically have infinity noise. Therefore, conventional projection-
type receivers are not suitable for the ZF detector.

Remark 4: From the previous analysis, we find that the
projection-type receivers have better performance if a “strong”
signal detector is applied, while the conventional SIC method
is more suitable if a simple MIMO signal detection estimator
is used. In other words, the projection-type receivers have a
higher performance upper bound, while the SIC-type receivers
have a higher performance lower bound when the detection
algorithm is relatively simple.

Remark 5: By setting the first order partial derivation of
∂(26)
∂ρ to zero, the optimal tradeoff factor is a function of Pr

and σ2. This indicates that, when a specific MIMO signal
detection algorithm is applied, the optimal tradeoff factor that
achieves the best signal detection performance is related to
the S&C power and noise density. In other words, the optimal
tradeoff factor should be environment adaptive, and we can not
expect one FP-type receivers such as projection-type receivers
or SIC-type receivers to achieve the desired performance in
various scenarios.

IV. LOW COMPLEXITY ALGORITHM DEVELOPMENT

Deriving a suitable algorithm for solving the transformed
signal detection problem in (13) is quite challenging due to
its large dimension and ill-conditioned issues. Specifically,
most low complexity algorithms, such as message passing
[25], [26], approximate matrix inverse [27], do not exploit
the alphabet constraint in algorithm development, yielding
poor performance when the equivalent channel matrix is ill-
conditioned, or even rank-deficient. On the other hand, many
performance-guaranteed algorithms in rank-deficient environ-
ments such as sphere decoding [28] and the semi-definite
relaxation (SDR) method [29], often entail high computational
complexity considering the high dimensionality of G.

In this section, we first introduce the homotopy optimization
framework, which is then utilized to solve the signal detection
problem in (13). Finally, a tailed low-complexity solution,
namely, DFP-type receivers, is presented. As compared to
the FP-type receivers, the DFP-type receivers can achieve
better path-tracing performance and enhanced environmental
adaptability.

A. Homotopy Optimization Framework

In general, the homotopy optimization method is a type
of path-tracing algorithm that is designed to solve complex,
nonlinear, and often non-convex optimization problems. The
central idea of homotopy optimization is to transform the
original difficult optimization problem into a set of simpler
problems by introducing a continuous transformation param-
eter. This parameter gradually deforms the objective function
from a simple starting function to the target function that
represents the original problem [30].

The key to homotopy optimization is to find a proper
surrogate function called the homotopy function. Assuming

that we are interested in finding the optimal solution of the
following problem via homotopy optimization method

z∗ = argmin f(z). (27)

We need to find a continuous homotopy function h(z, η) so
that

h(z, η) =

{
f0(z), if η = 0 and
f1(z), if η = 1,

where f0(z) = f(z) and finding the minimizer of f1(z) is
much easier as compared to f0(z).

The homotopy optimization starts with solving the mini-
mization problem with f1(z) as the objective function. By
gradually adjusting η from 1 to 0, the problem evolves, and
the solution of the previous minimization problem serves as
an initial point of the newly formulated problem. This allows
the optimizer to trace the path of the solution, and as the
transformation progresses, the minimizer converges to the min-
imizer of the original, more challenging problem. Overall, the
implementation details of the homotopy optimization method
are summarized in Algorithm 1.

Algorithm 1 Homotopy optimization Framework

Input: initial point z0, a decreasing sequence ηl, l =
1, · · · , L that satisfies η1 = 1, ηlmax = 0.
Output: The optimized result z̃ = zlmax .

1: l = 1
2: Repeat
3: Use a local minimization method, starting with

z(l−1), to compute an (approximate) solution z(l) to
argminh(z, ηl).

4: l = l + 1.
5: Until l = lmax

B. Homotopy-based MIMO Signal Detection Algorithm

In this subsection, we introduce a homotopy-based MIMO
signal detection algorithm presented in [31], [32]. The authors
of [31], [32] first found the homotopy function by proposing
an equivalent transformation of the MIMO signal detection
problem. Subsequently, a projected gradient (PG) method is
used under the homotopy optimization framework. In the
following, we introduce how to utilize this MIMO signal
detection algorithm to solve Problem (13) in the FP-type
receivers, which also serves as the basis of our subsequent
design.

By letting

y =

[
Re(yFP)
Im(yFP)

]
, x =

[
Re(xc)
Im(xc)

]
, (28)

and

G =

[
Re(GFP) − Im(GFP)
Im(GFP) Re(GFP)

]
, (29)

Problem (13) can be rewritten as

min
x∈X 2LK

R

f(x) = ∥y −Gx∥22, (30)

where x ∈ X 2LK
R denotes the real-valued alphabet constraint.



8

The main challenge of solving Problem (30) lies in the dis-
crete alphabet constraint. In the following theorem, we show
that the homotopy function can be constructed by relaxing the
alphabet constraint into its convex hull and penalization.

Theorem 2: Problem (31) is an equivalent transformation
of Problem (30) if the penalty parameter µ > λ1(G

T
G),

min
x∈conv(XR)

Fµ(x) = f(x)− µ∥x∥22

= xT
(
G

T
G− µI

)
x− 2yTG

T
x+ ∥y∥22.

(31)

Proof: Fµ(x) is strictly concave since G
T
G−µI is negative

definite. Theorem 2 can be proved by using the conclusion in
[33, Section 32]. ■

While Problem (31) is still a highly non-convex and hard
to solve problem due to its non-concave objective function,
the homotopy optimization method can be adopted with a
gradually increasing penalty sequence µl, l = 1, · · · , lmax.
Intuitively, when the penalty parameter µ is small: on the
one hand, the gap between Problem (30) and Problem (31)
is large, which potentially means that constraint x ∈ XR

may not be satisfied; On the other hand, the convexity of
Problem (31) is better preserved, suggesting that it is easier
to obtain the optimal solution of Problem (31). Considering
these properties, we start with a small value of µ (i.e., µ1 = 0)
and solve Problem (31) with gradually increasing µl in l-th
iteration. Finally, with a sufficiently large value of µl, we can
gradually approach the optimal solution to Problem (13).

With a fixed value of µl, Problem (31) can be solved using
the PG method [34]. The PG method is a low-complexity
iterative algorithm that alternates between gradient descent and
projection. In conventional MIMO signal detection problems,
such as Problem (30), projection involves rounding to the
discrete constellation, leading to conflicting effects as the
performance of the PG method approaches that of the linear
decoder [35]. Specifically, during the gradient descent stage,
the solutions move toward the non-constrained LS problem,
while the subsequent projection to the discrete constellation
diminishes the effectiveness of the earlier process.

When the original MIMO signal detection problem is rewrit-
ten into the continuous function in (31), the gradient descent
step and the projection step of the PG algorithm have been
modified. First, gradient descent is applied at the majorant of
Fµ(x). The majorant of Fµ(x) at the k-th step xk is obtained
by replacing ∥x∥22 with its first-order approximation, given by

Gµ(x | xk) = f(x)− 2µl⟨xk,x− xk⟩ − µl∥xk∥2. (32)

Thus, the gradient of Gµ(x | xk) is given by

∇xGµ

(
x | xk

)
= 2G

T
Gx− 2G

T
y − 2µlx

k. (33)

Second, the projection operation is performed on the continu-
ous convex hull of the original alphabet constraints conv(XR).
Given that the alphabet constraints in most modulation
schemes, such as phase shift keying (PSK) and quadrature
amplitude modulation (QAM), can be written as constant
modulus constraints [32]. The projection to these constant
modulus constraints is usually computationally effective and

also better at utilizing gradient information, thereby accelerat-
ing convergence speed.

Here we take 4-QAM as an example to show the benefit
of applying the transformation in Theorem 2. When the PG
method is directly applied at Problem (30), the projection
is performed at the constellation constraint x ∈ {−1, 1}n,
which means deciding each transmitted symbol according to
its signature. In contrast, with homotopy optimization, the
projection is performed at the convex hull of the constellation
constraint, conv ({−1, 1}n) = [−1, 1]n. As a result, the pro-
jection operation becomes ΠX (x) = [Π (x1) , . . . ,Π(xN )]

T,
where

Π(x) =

 −1, x < −1
x, −1 ≤ x ≤ 1.
1, x > 1

(34)

Thus, the projection in (34) tends to become smoother for
−1 ≤ x ≤ 1, making the PG method much easier to get rid
of the local optimal solution.

C. DFP-type Receiver Designs

While the aforementioned algorithm can efficiently address
the transformed MIMO signal detection problem, it still faces
the dilemma of selecting the proper value of ρ. Besides, the
FP-type receiver fails to establish the equivalence between
Problem (13) and Problem (4). In this regard, we propose to
further apply the spirits of the homotopy optimization, which
further leads to DFP-type receivers. In Lemma 3, we provide
a theoretical foundation for the proposed DFP-type receivers.

Lemma 3: Problem (35) is an equivalent transformation of
Problem (4) if µ > λ1(H

H
c Hc), and ρ = 0,

min
x∈conv(XR)

Fµ,ρ(x) = xT
(
G

T
(ρ)G(ρ)− µI

)
x

− 2yT(ρ)G
T
(ρ)x+ ∥y∥22,

(35)

where G(ρ) and y(ρ) are a function of ρ as defined in equation
(28) and (29).

Proof: Please refer to Appendix B. ■
Remark 5: Different from the conventional homotopy op-

timization framework, which introduces an auxiliary variable
to transform complex problems into more solvable ones. Two
auxiliary variables are introduced to establish the equivalence
between the newly formulated Problem (35) and the original
problem in (4). Therefore, more DoFs in algorithm develop-
ment are provided. In the following, we introduce the structure
and implementation details of the DFP-type receivers.

As shown in Fig. 4, the communication signal detection
process in the DFP-type receivers can be interpreted as a two-
loop iterative algorithm which can be divided into three parts.

In the l-th outer iteration, both the penalty parameter µl and
the tradeoff factor ρl update, as shown in the first part of Fig.
4. The first part is the major difference between the DFP-type
receivers and the FP-type receivers. Particularly, the tradeoff
factor ρ updates in each outer layer iteration according to the
predefined sequence ρl, l = 0, · · · , lmax , and ρl at the l-th
iteration is heuristically chosen as

ρl = ϵl, ϵ < 1. (36)
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This exponentiation expression ensures that ρ0 = 1 and with
an adequate number of iterations, ρl → 0. Then, in each
iteration, the matrix Pl = P(ρl), the vector yl = y(ρl) and
the matrix Gl = G(ρl) are, respectively, updated according
to equation (11) and (14).

In the inner layer, the PG algorithm is applied, as shown
in the second and the third part of Fig. 4. The second
part includes a modification of the conventional gradient
descent algorithm, called gradient extrapolated majorization-
minimization [36]. More specifically, the gradient descent at
the k-th step is performed on the linear combination of the
current point xk and previous point xk−1, which is called the
extrapolated point zk as follows

zk = αk(x
k − xk−1) + xk. (37)

Here, the linear combination coefficients sequence αk is
chosen from a predefined sequence as the design in [31].

The third part is to perform the gradient descent function
on the extrapolated point zk. The step size of the gradient
descent βk is chosen as βk = 1/∥Gl∥2 to fulfill the sufficient
descent condition of the quadratic function. Then, the point
after gradient descent tk is given by

tk = zk − βk∇xGµ

(
zk | xk

)
= zk − 2βkGT

l Glz
k + 2βkGT

l yl + 2βkµlx
k.

(38)

Finally, the estimated transmit signal at k+ 1-th iteration can
be obtained by projecting tk onto the convex hull of the real-
valued alphabet constraint conv(XR),

xk+1 = Π
(
tk
)
. (39)

The overall algorithm of the DFP-type receiver designs is
summarized in Algorithm 2, whose performance is affected by
the choice of the initial point. Therefore, it is crucial to select
an initial point that not only enhances algorithm performance,
but also maintains low computational complexity. In the DFP-
type receivers, we start with the ZF decoder. By exploiting
the Kronecker structure, the inverse in ZF detector can be
computed efficiently: G†

FP = P†
FP ⊗ H†

c. Since P†
FP can

be computed offline, the computational complexity is roughly
given by O

(
K3
)
, irrelevant to the length of the snapshots.

Given that only the matrix multiplication is involved in the
gradient descent and projection operations, the overall compu-
tational complexity of the communication signal detection is
roughly given by O

(
L2K2

)
+O

(
K3
)
, and the computational

complexity corresponding to the target response estimation is
given by O

(
L3M3

t

)
, same as the sensing only systems.

In summary, adopting the DFP-type receivers instead of
the fixed tradeoff factor FP-type receivers has two benefits.
Firstly, the proposed algorithm has a more smooth path-tracing
ability to the original problem, thereby reducing the hardness
of solving Problem (4). Secondly, although we can not obtain
the “optimal and environment adaptive” tradeoff factor as
discussed in Remark 5, we are using a “heuristic searching
method” with an increased diversity than the fixed tradeoff
factor FP-type receivers. Hence, the DFP-type receivers are
expected to be more robust in various scenarios.

Algorithm 2 Proposed algorithm for DFP-type receiver de-
signs

1: Input: The maximum outer layer iteration time lmax, the
maximum inner layer iteration time kmax, the penalty
sequence {µl}, the step size sequence {βk} and a starting
point x0.

2: Output: Estimated communication signal x̂c, and esti-
mated target response matrix ĥr.

3: l← 0
4: repeat
5: Update Gl and yl according to equation (11) and (14),
6: Set k ← 0, x0 ← xl,
7: repeat
8: Update the extrapolated point zk according to (37).
9: Obtain tk by using the gradient descent in equation

(38).
10: Obtain xk+1 by projecting tk using equation (39).
11: k ← k + 1.
12: until k = kmax.
13: xl+1 ← xk

14: l← l + 1
15: until l = lmax.
16: x̂c = xl.
17: Estimate the target response vector ĥr with the decoded

signal x̂c according to (8).

V. EXTENSION

A. PDFP-type receiver designs

The adoption of DFP-type receivers has significantly en-
hanced the environment adaptation compared to FP-type re-
ceivers. However, their adaptive ability is still limited by the
selection of the predefined tradeoff sequence ρl = ϵl. For
instance, when ϵ is small, the receivers quickly converge to
projection-type receivers, making them more suitable when
the sensing signal power is strong, but less effective when the
sensing signal power is weak. To further improve environment
adaptation, parallel DFP (PDFP)-type receivers can be used,
consisting of multiple DFP-type receivers. In PDFP-type re-
ceivers, we assume that P DFP-type receivers simultaneously
perform the communication signal detection using different
convergence speeds. The decreasing sequence of the tradeoff
factor for p-th receiver is chosen as ρl,p = ϵlp, p = 1, · · · , P .
Once the estimated communication signal x̂c,p, and the target
response vector ĥr,p of all P receivers is obtained, the final
communication signal and target response matrix are chosen
based on the detector with the minimum square error:

x̂c, ĥr = argmin
x̂c,p,ĥr,p,p∈{1,...,P}

∥∥∥y −Acx̂c,p −Arĥr,p

∥∥∥2
2
. (40)

B. Employing Block Structure to Enhance Uplink ISAC Re-
ceivers

The previous design primarily focused on developing an
algorithm to solve Problem (4), but two additional implemen-
tation issues must be addressed. The first question is how many
snapshots should be processed jointly. This choice not only
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Fig. 4: Illustration of the proposed DFP-type receiver designs Fig. 5: Block structure of the receiver
designs in uplink ISAC systems

impacts the computational complexity but also significantly
affects the S&C performance. For communication signal de-
tection, increasing the number of snapshots helps alleviate
the rank deficiency issue. Specifically, with the constellation
constraint, solving Problem (4) (or equivalently Problem (7))
reduces to finding the intersection of the solution space of
the equation Γy = Gxc (with dimension MtK) and the
constellation constraint xc ∈ XLK . By increasing the number
of snapshots L, this intersection narrows, resulting in a lower
BER. A heuristic choice for L that typically achieves the
desired performance is L ≈ Mt + K. On the other hand,
radar techniques such as multi-pulse accumulation require a
large number of snapshots (i.e., L≫Mt) to improve sensing
performance. However, processing such a large number of
snapshots significantly increases the computational complexity
of communication signal detection. The second question is
how prior information of the target response matrix, if avail-
able, can be utilized to further enhance the performance of the
proposed algorithm.

To address the above two problems, a block structure
is proposed that ensures fixed algorithmic complexity while
exploiting the prior information of the target. As shown in
Fig. 5, the overall snapshots are divided into I blocks, which
are constituted by J sub blocks. The length of the sub
block is determined by the communication setup, for instance,
L ≈ Mt + K, and the number of the sub block or equiv-
alently the length of the block is determined by the sensing
requirement. The communication signal detection is performed
in each sub block with the aid of the estimation results of
the target response matrix from the previous block. Then,
the performance gap between Problem (12) and Problem (13)
can be decreased given the estimated target response matrix.
Specifically, the estimation results of the target response matrix
from the previous block hr,i−1 are used to approximate the
exact value of hr. Thus, Problem (12) can be reformulated as

x̂c = argmin
xc∈XLK

∥Γ(y −Acxc) + ρΓ∥(y −Acxc −Arhr)∥22

= argmin
xc∈XLK

∥ΓFP(y −Arhr,i−1 −Acxc)

+ ρΓ∥Ar(hr − hr,i−1)∥22 (41)

≈ argmin
xc∈XLK

∥ΓFP(y −Arhr,i−1 −Acxc)∥22.

From the above derivation, the signal space component of
the target response estimation error instead of that of the target

response vector, is treated as the AWGN, greatly improving
the SINR. This is essentially similar to the spirits of the C-SIC
type receivers, where the sensing signal is first subtracted from
the received signal before applying a general projection-type
receiver.

After the communication signal of all the J sub blocks is
obtained, the target response vector can be estimated by com-
bining the overall J sub blocks. Thus, using the block structure
to improve the receivers’ performance can be interpreted as
a combination of the S-SIC scheme and the C-SIC scheme,
where the target response estimation is performed in the long
term and the communication signal detection is performed in
the short term.

VI. SIMULATION RESULTS

Simulation results are provided to evaluate the performance
of the uplink ISAC systems. We assume 4-QAM modulation
for uplink communication, and the radar waveform is assumed
to be orthogonal. Unless stated otherwise, we set the simu-
lation parameters as follows. The numbers of the antennas
equipped at the transmitter, receiver, and the number of the
CUs are set to Mt = 4, Nr = 8, and K = 8, respectively.
To better show the performance gap of different receivers, the
prior information of the target response is not exploited and
we assume that L = 16 snapshots are jointly processed. The
communication channel is generated following the distribution
of vec(Hc) ∼ CN (0, IK). It is assumed that the normalized
transmit power of the communication signal is Pc = 1 W,
while the noise power is set to σ2 = −20 dBw. The penalty
parameter is initialized as µ0 = 0.001, with a standard step
size in the subgradient method and the update rule presented
in [32]. The tradeoff factor in each iteration is updated as
ρl = 0.05l. The maximum iteration times for the outer and
inner layers are set as lmax = 200, kmax = 100, respectively.
We use the homotopy optimization method outlined in sub-
section IV-B for the SIC-type, projection-type, and FP-type
receivers, with parameters set the same as those for the DFP-
type receivers.

A. Performance Comparison of the Proposed Receivers

In this subsection, we evaluate the S&C performance of the
proposed algorithm, as shown in Fig. 6 and Fig. 7. In Fig. 6, we
examine the BER of different types of receivers under different
signal-to-interference ratio (SIR) of the communication signal
detection problem SIR ≜ Pc/Pr. As observed in Fig. 6, the
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projection-type receivers exhibit a constant BER across differ-
ent SIR levels, indicating a lack of environmental adaptation.
The performance of the SIC-type receivers deteriorates when
the SIR is below 15 dB, suggesting that they are only effective
when the sensing signal is weak. In contrast, the proposed
DFP-type receivers outperform both the projection-type and
FP-type receivers, especially at higher SIR levels. However,
their performance begins to saturate when the SIR exceeds
10 dB. The PDFP-type receivers, which combine two DFP-
type receivers to enhance environmental adaptation, provide
improved performance across a wider range of SIR values.

In Fig. 7, we examine the normalized mean square error
(NMSE) of the target response vector hr with different types
of receivers as the transmit power of the sensing signal
varies. The sensing SNR, corresponding to the target response
estimation problem, is defined as SNRs ≜ Pr/σ

2. It can be
observed that the NMSE of the projection-type receivers and
the DFP receivers decreases as the transmit power increases,
less than 0.02 when SNRs = 20 dB. Besides, DFP-type
receivers have better performance than the FP-type receivers
as they address the communication signal detection task more
efficiently. However, the performance of the SIC-type receivers
does not improve monotonically as the sensing SNR increases.
This is because, in the SIC-type receivers, the communication
signal detection performance in the first stage is poor when
the transmit power of the sensing signal is high. In this
case, the residual communication signal detection error is
much larger than the noise, which degrades the subsequent
sensing performance. Therefore, projection-type receivers and
the proposed DFP-type receivers, are better suited to achieve
desired S&C performance simultaneously.

B. Impact of System Parameters

In Fig. 8, we evaluate the performance of different types
of receivers under different noise densities. The SNR of the
signal detection problem is defined as SNRc ≜ Pc/σ

2. In
Fig. 8(a), we consider the typical i.i.d. Gaussian channel,
while in Fig. 8(b), we consider a correlated communication
channel with a correlation coefficient of r = 0.3 [37]. It
can be observed that adopting the DFP-type receivers yields
better performance than the projection-type receivers using the
homotopy optimization, and approaches the performance of

the projection-type receivers using the SDR detector. However,
the computational complexity of SDR is approximately 100
times higher than that of the DFP-type receivers using the
homotopy optimization, with a complexity of O

(
L3.5K3.5

)
.

Furthermore, compared to Pr = 0 dBw, Pr = −5 dBw
provides better signal detection performance, especially when
SNRc is large. This can be interpreted as a S&C performance
tradeoff by varying the transmit power. Finally, the perfor-
mance of the uplink ISAC receivers deteriorates when the
communication channels are correlated, but the performance
trend remains similar.

In Fig. 9, we evaluate the impact of increasing the num-
ber of antennas under different system setups. We assume
Pr = 1 W and consider a critically determined communication
channel, i.e., K = Mr. The results show that the number
of snapshots significantly affects the decoder’s performance.
When the number of snapshots is fixed at L = 16, increasing
the number of antennas provides limited performance gain.
However, when the number of snapshots increases with the
number of antennas, i.e., L = Mt + 8, the BER decreases
rapidly as the number of antennas increases, similar to the
trend observed in MIMO communication systems [15]. When
K = Mr = 40 and σ2 = −20 dB, the BER approaches
10−7, much smaller than in the case with fixed snapshots. This
suggests that the number of snapshots should scale with the
number of antennas to fully harness the potential of uplink
ISAC systems. Furthermore, it is observed that increasing
the number of transmit antennas for sensing can lead to an
increase in BER due to the rank deficiency issue, as discussed
in Lemma 1.

C. Employing Block Structure in the Receivers

In Fig. 10, we examine the benefits of applying a block
structure in uplink ISAC receivers. Each sub-block contains
20 snapshots, and the PDFP-type receivers are considered.
The NMSE of the target response vector estimation and the
BER are shown in Fig. 10(a) and Fig. 10(b), respectively, with
varying numbers of snapshots (or equivalently, the number of
sub blocks). It can be observed that as the number of snap-
shots increases, both the NMSE and the BER decrease. The
decrease in BER can be explained as follows: increasing the
number of snapshots improves the target response estimation
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Fig. 8: BER of different types of receivers versus communication
SNR under Gaussian channel (a) and correlated channel (b)
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precision, and a more accurate approximation of the target
response reduces radar signal interference, leading to better
communication performance. Additionally, when the number
of sub-blocks is small, higher sensing signal power improves
target response estimation but also increases BER. However,
as the number of sub blocks increases, the NMSE and radar
signal interference become negligible, allowing the BER of
the uplink ISAC systems with varying sensing signal power
to approach that of the communication only systems.

VII. CONCLUSION

In this paper, the joint signal detection and target response
estimation problem in uplink ISAC systems was investigated,
and a general receiver framework termed FP-type receivers
with a tradeoff factor was introduced. In the FP-type receivers,
communication signals were detected using a reconstructed
signal. It was shown that decreasing the tradeoff factor im-
proved the SINR of the signal detection problem but also
amplified the undesired correlation between the reconstructed
signal. The PEP of the FP-type receivers under both ML and
ZF detectors was studied, revealing that the optimal tradeoff
factor depends not only on the communication signal detection
algorithm but also on the environment. Building on a MIMO
signal detection algorithm using homotopy optimization, DFP-
type receivers were proposed, transforming the signal de-

tection problem into a continuous optimization problem. By
adjusting the tradeoff factor in each iteration, DFP-type re-
ceivers provided smoother approximations to the original prob-
lem and offered improved environmental adaptability. Two
extensions were then discussed: PDFP-type receivers, which
used multiple DFP-type receivers for enhanced environmental
adaptability, and the block structure of uplink ISAC receivers,
which incorporated prior target information to further enhance
performance.

APPENDIX A
PROOF FOR THEOREM 1

The SINR of the transformed signal detection problem using
the FP-type receivers is given by

SINRFP ≜
E
[
∥ΓTAcxc∥22

]
E [∥ΓTArhr∥22] + E [∥ΓTn∥22]

=
E
[
∥ΓTAcxc∥22

]
ρ2E [∥Arhr∥22] + E [∥ΓTn∥22]

,

=
E
[
Tr(ΓFPAcE

[
xcx

H
c

]
AH

c Γ
H
FP)
]

ρ2E [∥HrXr∥2F ] + Tr(ΓFPE [nnH]ΓH
FP)

(a)
=

PcE
[
Tr(GFPG

H
FP)
]

ρ2LPs +Tr(ΓFPΓH
FP)Kσ2

,

(A.1)

where (a) exploits the distribution of the uplink communication
signal. Then, we have

(A.1) =
PcE

[
Tr(GFPG

H
FP)
]

ρ2LPs +Tr(ΓFPΓH
FP)Kσ2

(A.2)

=
PcE

[
Tr(PFPP

H
FP ⊗HcH

H
c )
]

ρ2LPs +Tr(PFPPH
FP ⊗ IMr

)Kσ2

=
Pc Tr(PFPP

H
FP)E

[
Tr(HcH

H
c )
]

ρ2LPs +Tr(PFPPH
FP) Tr(IMr )Kσ2

=
Pc((1− ρ2) Tr(P⊥) + ρ2 Tr(IL))KMr

ρ2LPs + ((1− ρ2) Tr(P⊥) + ρ2 Tr(IL))MrKσ2

=
Pc(L− (1− ρ2)Mt)KMr

ρ2LPs + (L− (1− ρ2)Mt)MrKσ2
.

It can be easily observed that the SINRFP is an decreas-
ing function w.r.t. g(ρ2) = Lρ2/(L− (1− ρ2)Mt), ρ

2 ∈
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[0, 1], L ≥Mt. By deriving the first order partial derivation of
∂g
∂ρ2 , we have

∂g

∂ρ2
=

L−Mt

(L− (1− ρ2)Mt)
2 > 0. (A.3)

Therefore, SINRFP is an decreasing function w.r.t. ρ.

APPENDIX B
PROOF FOR LEMMA 4

Lemma 4 can be proved by combining Theorem 1 and
Theorem 2. Since we have

G
T
(ρ)G(ρ) =

[
GH

FPGFP 0
0 GH

FPGFP

]
(B.1)

and λ1(P
H
FPPFP) = 1. The largest eigenvalue of matrix

G
T
(ρ)G(ρ) is given by

λ1(G
T
(ρ)G(ρ)) = λ1(G

H
FPGFP) (B.2)

= λ1(P
H
FPPFP)λ1(H

H
c Hc) = λ1(H

H
c Hc).

According to Theorem 2, it can be proved that Problem (35)
is equivalent to the transformed signal detection problem in
(30). Finally, when ρ = 0, the FP-type receivers reduce to the
conventional projection-type receivers, thereby achieving the
equivalence between the transformed signal detection problem
and the original ML estimation problem in (4).
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